为切实促进高校优质科技教育资源开发开放,建立高校与中学联合发现和培养青少年科技创新人才的有效方式,中国科协和教育部自2013年开始共同组织实施中学生科技创新后备人才培养计划(简称“英才计划”)。目前,共有15个省市、20所高校等参与培养工作。
在中国数学会2022年学术年会中,中国数学会与英才计划全国管理办公室设置了中学生创新人才培养论坛。参加论坛人员包括英才计划数学学科工作委员会专家,部分“英才计划”高校导师、中学教师、数学学科学生等。
北京大学重庆大数据研究院基础软件科学研究中心执行主任、北太振寰创始人卢朓副教授收到中国科协的邀请参加论坛,分享中学生基础学科科技创新后备人才的培养经验与体会。他说他感到非常荣幸。刘东升、陈姝羽等学生取得一系列的成绩,这主要还是他们自己努力的结果。他为他们感到高兴和自豪。
卢朓副教授参与了四年的“英才计划”项目,教学相长,对中学生人才的培养工作有了更深的认识,以下是卢朓副教授在论坛上的汇报。
结合我自己的科研方向,一方面,我希望能够在“德、才、学、识”四个方面提高学生的综合素质。
王梓坤院士的《科学发现纵横谈》是一本很好的科普书,每年我都会推荐给学生。王梓坤院士把治学成才之道归纳成十个字——“理想、勤奋、毅力、方法、机遇”。
“德、才、学、识”是对科学工作者的素质的基本要求。德,主要是指政治立场和态度, 指追求真理、热爱真理、严于律己,力求人品高尚。“德、才、学、识”四者不可或缺,而“德”居其首。“才”、“学”、“识”受“德”的制约。
我在对学生的培养过程中,把“德”放在首位,让学生了解科技发展的现状以及“卡脖子”问题,让学生立大志,把自己的成长与国家的需要紧密地结合起来。
柴静记者对丁仲礼院士的访谈是一段很好的科普节目。在访谈过程中,丁仲礼院士向大家说明,地球平均气温升高2度会导致多少多少物种灭绝是英国的一家科研小组用计算机模拟出来的,并不一定可信。
柴静接着说“我们几乎是信仰实验室的所有…”。 可以看到柴静从相信科学已经变成了迷信科学了,实际上科学结论是可以证伪的,并非意味着绝对真理。柴静又进一步说“ ... 得到了主流科学界的认同” 。这说明柴静是迷信西方的科学家权威。
丁仲礼院士说:“科学家有主流吗,真理的标准是根据人多人少定的吗?”接着,柴静又说“作为一个科学家不应该从国家利益出发,而应该从整个人类的共同利益出发”。这说明柴静是把西方的利益看成了整个人类的共同利益。
实际上,我们如果没有维护占到全球总人数1/5的中国人的利益,就不能说我们维护了全人类的共同利益。在培养学生的过程中,我会建议学生看看这段访谈,告诉他们不要迷信科学、不要迷信权威。
西方国家在科技等各个方面卡我们的脖子,破坏全球公平竞争的环境,其目的只是为了他们自己的利益。如果真如他们所愿,我们完全失去了竞争力,最终也会导致他们失去继续努力奋斗的动力,进而影响全人类的科技发展。
我们期待的是全人类的团结协作,共同推动科技等各个方面的发展。目前惧怕公平竞争的不是我们,我们没有选择,只能自力更生努力奋斗,争取把核心技术掌握在自己的手里,这样才能使西方看到封锁无效之后,放弃他们使绊子的行动,才能够迎来全人类团结起来为共同利益而努力奋斗的美好局面。
另一方面,我希望能够培养学生的数学建模、数据分析和数值实验的能力。
(1)应用数学的价值观的三个方面:理论、交叉和落地
对学生的培养主要还是看学生的兴趣,因材施教;另外也结合我自己的专业特点——应用数学方向。早期的数学并没有区分基础数学和应用数学,后来研究方向开始逐步细化,可以分成基础数学和应用数学:基础数学包括代数,几何和分析;应用数学包含概率统计、运筹优化、计算数学、控制论等。
应用数学的价值观和基础数学不一样,它具有多元化的价值观。在张平文院士的《数据科学融通应用数学》的报告中给出了三个方面:
首先,应用数学和基础数学一样,也是数学的一部分,也追求简洁与美,我们称之为理论;第二,应用数学和化学、材料等学科交叉,此时应用数学追求的价值观和所交叉的学科的价值观一致;第三,应用数学还有很重要的一个价值观是“落地”,即经济与社会价值。这部分也是非常重要的。
现在全世界哪个公司最重要、最厉害?谷歌显然算得其中之一。谷歌起源于PageRank算法。
扫码查看Page Rank 算法简介视频
我在B站给出的PageRank算法的一个简介,有兴趣的中学生也是能看得懂的。作为谷歌公司的PageRank算法从数学的眼光来说,它不属于原创,从逻辑角度来说却是原创的,即追求经济与社会价值。
(2)应用数学的精髓是模型和计算:数学建模的重要性
应用数学的精髓是模型和计算。
1998年菲尔兹奖得主、英国数学家高尔斯(T.Gowers)认为:数学研究的对象并非真正的现实世界本身,而只是现实世界的数学模型,也就是现实世界的一种虚构和简化的版本。
李大潜院士指出:“传统的数学教育往往从基本的概念或定义出发,以简练的方式合乎逻辑地推演出所要求的结论。这固然可以使学生在较短时间内按部就班地学到尽可能多的内容,并体会到一种丝丝入扣、天衣无缝的美感。但是,过分强调这一点,就可能使学生误以为数学这样的完美无缺、无懈可击是与生俱来、天经地义的,反而使思想处于一种僵化状态,在生动活泼的现实世界面前手足无措、一筹莫展,甚至使学生感到学了很多据说非常重要、十分有用的数学知识以后,却不会应用或无法应用,甚至还觉得毫无用处。"
数学模型是数学与应用的一个桥梁。李大潜院士还指出“通过数学建模将一个看来与数学无关的现实问题归结为一个合理的数学问题,并利用数学方法成功地予以解决,这是重要的能力与素质。这种能力和素质的培养与提高,对一个合格的数学工作者、特别是应用数学工作者来说,无疑是十分值得重视、应该着重加以培养的。数学建模对培养创新型人才非常重要。” 现在国家已经把数学建模的实践与活动列入全国高级中学的教学计划。
(未完待续)
点击链接查看:英才计划与中学生培养(一):卡脖子形势下,人才培养方向何在?
本文为北京大学重庆大数据研究院基础软件科学研究中心执行主任、北太振寰创始人卢朓副教授在中国科协组织的中学生创新人才培养论坛上的分享。
计算是求解数学模型的手段。可是对于中学生来说,很多算法的实现并非易事,因此可选择的可以求解的数学模型就很少了。例如,求函数的最大值的问题,往往只能对二次函数,三角函数来求解,稍微复杂的函数就不会了。
其实,很多数学模型对中学生来说还是比较容易掌握的。为了让学生建模的时候可以选择更多的模型,我建议学生使用数值计算通用软件来消除求解难的顾虑。
借助数值计算通用软件,更有利于培养同学们的数学建模能力,我举几个例子:
第一个例子是线性规划、二次规划和整数规划之类的模型。实际上,中学生已经接触过这样的问题了,但是往往局限在很小的数值范畴内。这种模型的威力并未得到充分展现。
中学生如果使用数值计算通用软件来求解此类问题,那么就可以把更多精力放在体会这种数学模型的特点上。
我在B站上给出了一个视频,展示了如何使用数值计算通用软件求解整数规划问题,我相信感兴趣的中学生可以很快学会使用计算机求解整数规划问题的方式。
第二个例子与使用常微分方程的初值问题建模有关,这个可以和物理学科结合起来。我们可以通过测量物体在不同时刻的位移,把数据画出来,借助于常微分方程给出物理运动规律,这样就是在重走牛顿当年的发现之路。至于常微分方程初值问题的求解则可以借助数值计算通用软件来完成。
第三个例子是关于机器学习和人工智能的算法。
我在B站上给出了如何使用数值计算通用软件读取Excel数据,然后如何使用朴素贝叶斯来判断西瓜好坏的例子,也可以供中学生学习。
总之,我建议中学生借助数值计算通用软件来了解读取数据、数学建模、数值计算以及计算结果的可视化等环节,然后选取自己感兴趣的部分多下功夫,其它环节则可以通过数值计算通用软件具有的内置函数以及插件来完成。
参加“英才计划”的学生不一定都要找现实中的问题来做数学建模,还可以通过阅读文献来学习。如果对数学或者其他学科的某些定理和知识点感兴趣,可以通过数值计算通用软件来验证,加深对这些定理的理解。 这样的计算不能代替证明,但是帮助大家体会这个知识点的含义。
通过“英才计划”,我希望学生在多个方面有所收获,如:
1.提升搜集、理解、组织数据的技能,数学建模能力,团队协作能力以及论文写作能力;
2.培养定量研究发展变化规律的习惯,培养好奇心、想象力、创造力和表达力;
3.了解计算机算法和原理、数值计算通用软件的基本用法,对数学知识的用途有更深的认识等。
科学计算已经成为与理论和实验并列的科学研究的基本手段。科学计算软件可以分成两种类型:专用型和通用型。
通用型科学计算软件是开发工业软件的重要基础性工具,长期以来,这一部分的市场由国外公司垄断。通用型数值计算软件就好像连接各个工厂的高速公路一样,是数值计算软件中的基础设施。有了高速公路的连接,工厂的原材料才能运进来,生产的产品才能更方便地送到用户手里。
在向参加“英才计划”的学生推荐数值计算通用软件时,我最初考虑的是MATLAB。但由于这是一款商业软件,我担心购买软件会给学生带来额外的经济负担,所以并未选择。
2020年,美国商务部宣布新增33 家中国公司及机构列入 “实体清单”,中国大陆共有 13 所高校被列入该清单,分别为哈尔滨工业大学、哈尔滨工程大学、中国人民大学、北京航空航天大学、西安交通大学、西北工业大学、四川大学、电子科技大学、湖南大学、国防科技大学、同济大学、南昌大学、广东工业大学。MATLAB 所属公司 MathWorks 中止了对以上高校的正版授权。
这让我为当初自己的选择感到庆幸,也让很多人意识到通用型数值计算软件是一个“卡脖子”技术,没有这个技术,我们自己开发的专用软件或者算法就无法得到广泛的应用。但当时我仍想着:好在,我们还有Python可以使用。
可在俄罗斯-乌克兰战争爆发后,据相关报道显示“目前已经有多达30个开源项目加入了对俄罗斯的抵制,其中甚至包括亚马逊(AWS Terraform modules)和Oracle等科技巨头的项目,也不乏MongoDB、pnpm、es5-ext、Drupal、Redis Desktop Manager等流行项目”。这让我进一步认识到:这类开源软件的主导权如果是掌握在别人的手里,仍然蕴藏着危险。
事实上,中国的基础数学和理论数学研究在国际上还是处于领先地位。在涉及具体的算法或专用型数值计算软件领域,我们中国的科学家也取得了很好的成绩,在有关算法的顶级杂志上,中国人发表论文的数量和质量都位于前列,有很多算法被国外的通用型数值计算软件集成,得到了广泛的应用。
但是我们缺乏像MATLAB这样的数值计算通用软件。这是为什么呢?
因为,通用型的数值计算软件的开发需要耗费大量的时间,需要投入大量的人力物力,无法在短期内做出高精尖的成果。研发过程中需要有关键的技术基础,要掌握核心关键的规律、知识和方法,这些都只能通过“学中干”和“干中学”相结合才能获得。
工业软件可以说是现代产业体系之魂。目前,欧美的工业软件几乎已经渗透了所有工业领域的核心环节。发展具有自主知识产权的工业软件刻不容缓,对掌握我国产业发展的主导权,增强工业体系的韧性和抗打击性都非常重要。
而通用型数值计算软件的研发意义尤为重大:它不仅自己就是一个工业软件,还能够成为其他工业软件的底座,防止国产工业软件被釜底抽薪;同时,数值计算通用软件也是一个非常好的创新平台;正如前文所述,此类软件对于人才培养也至关重要。
通用型数值计算软件的成功研发,将是对人类文明的贡献,也是国家软实力的标志之一。因此,虽然困难重重,我和其他志同道合的伙伴们还是决心开发具有自主知识产权的通用型数值计算软件,破解“卡脖子”问题。
(未完待续)
点击下方链接,选择适合的版本安装即可,目前MAC、麒麟系统等正在适配中,敬请期待!
以下为北太天元的官方文档,可按需查阅:
如果您是新手不知道该如何上手,可以观看以下软件培训视频对软件有更细致的了解,里面也附有培训的演讲ppt以供查阅:
实践出真知,了解完理论知识,就可以尝试敲代码了。以下为我们精心挑选的用户的实操案例,可以参考:
对于一些函数的学习,建议大家在软件里善用【help】
如果您是相关行业的开发者,对软件的使用已经非常熟悉,可以观看以下插件开发培训视频,按照自己的需求开发插件,里面也附有培训的演讲ppt以供查阅。欢迎大家一起对软件进行探索,壮大国产软件!
我们会不定期更新软件使用小技巧,帮助您能更好的使用软件。
大家使用北太天元软件常问问题已整理成Q&A文档,供大家学习参考:
若文档里的内容仍没有为您答疑解惑,可以在社区发帖或在该贴下评论求助。
本帖会持续更新相关学习文档及操作指引手册,方便大家查阅学习,请持续关注哦~
第十五届“华中杯”大学生数学建模挑战赛(以下简称竞赛)于3月13日正式开启报名。举办竞赛的目的在于提升学生对数学科学理论及应用价值的认识,培养学生的创新意识与团队精神。竞赛由湖北省工业与应用数学学会主办,泰迪智能科技(武汉)有限公司承办,武汉大学、华中科技大学、华中师范大学、中南财经政法大学、华中农业大学、中国地质大学、武汉理工大学、湖北大学、武汉科技大学协办。
北太振寰(重庆)科技有限公司等支持单位将协助竞赛的开展,而北太天元数值计算通用软件(以下简称“北太天元”)将为竞赛提供软件支撑。
紧跟时代发展,丰富赛题类型。紧跟大数据、人工智能时代,既突出传统模式,又兼顾时代特色。在赛题设置上,既有传统数学理论与方法的运用,也有当前热点研究与应用的探索。
重视赛前辅导,强调赛后总结。利用好互联网在线会议的便利条件,面向所有报名参赛师生,开展赛前在线辅导,赛后赛题分析交流活动,进一步提升竞赛的服务功能。
定位国赛预演,突破区域壁垒。北太天元作为国赛推荐的国产通用型科学计算软件,可支持高校教学、科研和竞赛等场景。“华中杯”组委会将提供免费(不得作为商用)下载北太天元的链接,并提供相应的竞赛辅导。
所有普通高校全日制在校生。以队为单位报名参赛,每支参赛队伍不超过3个人(须来自同一学校)。每支队伍可以指定1名指导老师。
报名时间:2023年3月13日—4月29日
比赛时间:2023年4月30日20:00—5月3日20:00
作品评阅:2023年5月4日—5月22日
成绩公示:2023年5月23日—5月29日
成绩发布:2023年5月30日
1、特等奖每道题不超过两支队伍,每支队伍获得奖金5000元(需扣除个人所得税),竞赛官网视频资源免费学习一年,荣誉证书(电子证书);
2、一等奖不超过报名队数的5%,竞赛官网视频资源免费学习一年,荣誉证书(电子证书);
3、二等奖不超过报名队数的10%,竞赛官网视频资源免费学习三个月,荣誉证书(电子证书);
4、三等奖不超过报名队数的20%,荣誉证书(电子证书);
5、比赛还将根据各校参赛情况颁发优秀组织单位奖(电子证书)、优秀指导老师奖(电子证书)、优秀组织社团奖(电子证书),提供同花顺金融数据终端、数据接口等账户若干免费使用六个月;
使用北太天元软件还将有以下特别奖励:
总体来说,数学建模赛题类型主要分为:评价类、预测类和优化类三种,其中优化类是最常见的赛题类型,必须要掌握并且熟悉。
如下图所示:主要分为评价类,预测类和优化类问题。
综合评价问题是数学建模问题中思路相对清晰的一类题目,从每学期的综合测评、旅游景点的选择到挑选手机,评价类问题在生活中也是处处存在。
① 建模步骤如下图所示:
② 主客观评价问题的区别
●主客观概念主要是在指标定权时来划分的。主观评价与客观评价的区别是,主观评价算法在定权时主要以判断者的主观经验为依据,而客观评价则主要基于测量数据的基本特性来综合定权
●定权带有一定的主观性,用不同方法确定的权重分配,可能不尽一致,这将导致权重分配的不确定性,最终可能导致评价结果的不确定性。因而在实际工作中,不论用哪种方法确定权重分配,都应当依赖于较为合理的专业解释。
一般来说,客观定权法更为准确,但是会很麻烦。
③ 如何选择合适的评价方法
在评价类问题的分析中,如何选择合适的评价方法是决定评价结果好坏的关键因素,因此需要洞悉各常用评价方法的基本特性和使用条件才能顺利答题。
① 预测类赛题的基本解题步骤
●预测就是根据过去和现在去估计未来,预测未来。统计预测属于预测方法研究范畴,即如何利用科学的统计方法对事物的未来发展进行定量推测
●基于数学建模的预测方法种类繁多,从经典的单耗法、弹性系数法、统计分析法,到目前的灰色预测法。当在使用相应的预测方法建立预测模型时,我们需要知道主要的一些预测方法的研究特点,优缺点和适用范围
② 预测类问题的区别
●预测类问题分为两类:
●一类是无法用数学语言刻画其内部演化机理的问题;
●另一类是可以通过微分方程刻画其内部规律,这类问题我们称为机理建模问题,通过微分方程建模求解。
③ 如何选择合适的预测方法
●在预测类问题的分析中,同样受到预测条件的限制(如数据量的大小、变量之间的关系等)不同的预测方法可能会产生不同的结果,因此需要根据实际情况来选择。
① 优化类赛题的基本解题步骤
●优化类问题是从所有可能方案中选择最合理的方案以达到最优目标。在各种科学问题、工程问题、生产管理、社会经济问题中,人们总是希望在有限的资源条件下,用尽可能小的代价,获得最大的收获(比如保险)。
●优化类问题一般的解题步骤为:
(1)首先确定决策变量,也就是需要优化的变量;
(2)然后确定目标函数,也就是优化的目的;
(3)最后确定约束条件,决策变量在达到最优状态时,受到那些客观限制。
② 如何选择合适的优化方法
优化类问题中常用的数学模型和求解算法,其中包括线性规划、非线性规划、整数规划、多目标规划等。在模型求解中,对于凸优化模型,可以采用基于梯度的求解算法;对于非凸的优化模型,可以采用智能优化算法。
(本文转自公众号“数学建模老哥”,给大家提供一些思路,希望对同学们有帮助~)
“数维杯”大学生数学建模挑战赛(以下简称“数维杯”)是由内蒙古创新教育学会、内蒙古基础教育研究院主办,全国各高校大学生参与的交叉学科比赛。“数维杯”每年举办两场,上半年为“数维杯”国赛(5月),下半年为“数维杯”国际赛(11月)。经过七年多的发展,竞赛已成为国内极具影响力的基础学科与应用科技的赛事。
2023年,北太振寰(重庆)科技有限公司作为支持单位将协助“数维杯”的开展,而北太天元数值计算通用软件(以下简称“北太天元”)将为竞赛提供软件支撑。
“数维杯”已成为继数学建模国赛和美赛之后的第三大全国性数学建模赛事,已被多所高校推广甚至列为国家级赛事选拔赛。
“数维杯”将竞赛与教学相结合,提供评阅标准及赛题分析,并为赛后论文提供评分和评阅意见,使学生逐步积累数学模型及参赛经验。同时,大赛还面向所有参赛队伍开展数学建模赛前培训指导及专题讲座,帮助参赛者快速提高数学建模技能。
竞赛面向在校专科生、本科生、研究生开发,每组参赛人数为1-3人,每名同学只能参加一个小组,允许跨校组队。
竞赛时间安排如下:
报名截止时间:2023年5月12日7:00
竞赛开始时间:2023年5月12日8:00
竞赛结束时间:2023年5月15日9:00
竞赛结果公示时间:2023年7月中旬或之前
报名入口及竞赛详细情况:http://www.nmmcm.org.cn/match_detail/26
北太天元是面向科学计算与工程计算的国产通用型科学计算软件。
本软件具有自主知识产权,提供科学计算、可视化、交互式程序设计,具备丰富的底层数学函数库,支持数值计算、数据分析、数据可视化、数据优化、算法开发等工作,并通过SDK与API接口,扩展支持各类学科与行业场景,为各领域科学家与工程师提供优质、可靠的科学计算环境。
目前,北太天元核心数学函数替换率达到72%,功能函数替换率达34%,可支持高校的教学科研工作。
使用北太天元参赛,将有机会获得特别奖励。
北太天元将为“数维杯”参赛队伍免费提供软件支撑,并在赛前为参赛学生提供软件使用教程或培训,助力参赛队伍更快熟悉北太天元的功能与操作,提升数学建模能力。
为帮助同学们更好地完成“数维杯”赛前准备,本社区现已推出数模竞赛专栏,专栏将逐步更新数模竞赛的干货知识,如往年赛题解析、论文写作技巧等。
同时,同学们还可以在本社区自由讨论,在交流备赛经验的过程碰撞出新的火花,逐步提升自身能力。我们也会有专业的技术开发人员为大家答疑解惑,欢迎各位同学积极发帖~
在数学建模大赛中,团队协作是很重要的一部分。在有限的三天时间里,需要完成研究题目、确定选题、查找资料、分析问题、撰写论文、构建模型等事项,除非你的个人能力很优秀可以一个人做完全部,否则合作才是最好的选择。那么,结合自身情况,该选择什么样的人组队合作呢?
关于数模组队,有不少传说中的经典配置,比如:
“建模手+编程手+论文手”
“数学专业+计算机专业+金融专业”
“男女搭配,干活不累,两男一女组合”
......
其实前两者都是从专业技能分工的角度去考虑,而后者是从团队成员配合度的角度去考虑,其实两个维度都挺重要的。
1、专业技能分工角度
“建模手+编程手+论文手”是数学建模组队的一个经典配置,因为在答题过程中可以简单的把事情分为模型搭建、模型实现、论文写作三个部分。
建模手主要就是负责模型搭建,提供团队对问题的解决思路和方法。他会对优化模型、预测模型、分类模型、评价模型等比较熟悉,可以根据实际的题目来选择适合的模型去解决问题。这方面数学专业的同学就会比较有优势。
编程手最好至少掌握一门编程语言,能够通过软件对模型进行模拟、求解和检验。当然,在编程的过程中也需要对模型有一定的理解,这样才能在最大程度上复现模型并不断调优。在这方面计算机专业的同学会比较有优势,现学编程语言上手也会快一些。同学们在建模的时候可以尝试使用北太天元,它对建模编程小白来说也很友好,简单易上手,也可以在社区里找到学习资料。
论文手需要对团队的前进方向有清晰的把握,通过准确的文字、图表对模型进行展示,把团队的研究成果有条理有逻辑的表述出来。很多人调侃论文手就是来打酱油的,但其实论文是很重要的一部分,因为最后评阅老师看的就是你的论文。论文手可以把近五年的比赛优秀论文都看一遍,并选同类型问题的几篇精读,学习论文的思维。当然,如果论文手精通LaTex也是一个加分项,不会的话用Word也完全够用了。学金融专业的同学会上数学分析、统计软件相关的课程,平时也需要写学科论文报告,所以在组合配置中,除数学专业、计算机专业的同学外,会推荐金融专业的同学。
从以上描述中就可以看出,在实际分工中不可能如此界限分明,大家多多少少都会有一些交叉的部分,建模手需要把自己的理解通过文字、公式准确的传达给论文手,而论文手反过来也要能快速理解建模手的意图。建模手与编程手,编程手与论文手之间也是这样的,需要不断沟通互相理解。
其实每个人都应该具备基本的建模、编程、写作能力,但每个人的侧重点又不同,这才是绝佳组合。
2、成员配合度角度
除了专业能力外,队友的性格也同样重要,找到合得来的队友才会有1+1>2的效果。
选择靠谱,责任心强的队友。不会出现半途而弃、找不到人的情况,交给他的事情可以尽他最大努力做好。
选择性格好,不强势的队友。一个队里最好不要出现两个及以上很强势的人,这样在出现不同意见时容易出现僵持不下谁也不服谁的情况,最后听谁的还没理出来比赛时间已经结束了。
选择目标一致的队友。在组队前就沟通好参赛是为了什么,如果都是为了拿奖那大家都会很用心,但如果有人只是没参加过想体验一下,那很有可能出现有人付出多,有人付出少的情况。
选择沟通能力强的队友。团队协作中沟通真的是很重要的一部分,有个沟通能力强的人,即使另外两个人不怎么会表达,沟通能力强的人也能从中做调解,让大家都能快速领会对方想表达的,不把时间浪费在沟通上。
说了这么多,你是队伍里的哪类人才呢?可以在评论区告诉我。祝大家都能找到心仪的队友,还没找到队友的也可以在社区里招募哦~
关于找队友方面还有什么补充的或者踩坑经历也欢迎同学们留言讨论
欢迎各位朋友在此贴下回复反馈问题,您的每一条反馈都是在为国产基础软件添砖加瓦。
若问题较为复杂,涉及到相关代码,建议直接在“问题答疑”板块发帖反馈。
若通过在该贴下回复来反馈问题,请参考下方问题反馈模版:
问题类型:计算问题/功能问题/ 使用问题/未支持的函数/未实现的功能/其他
使用的操作系统:Windows/Ubuntu/Deepin/统信UOS
问题描述:
问题截图:
小tips:提问前可以先看看是否已有类似问题并已得到解答,避免重复提问哦~
再次感谢您为国产基础软件做出的贡献!
点击链接查看:
英才计划与中学生培养(一):卡脖子形势下,人才培养方向何在?
英才计划与中学生培养(二): 研发国产软件,培养学生建模能力
本文为北京大学重庆大数据研究院基础软件科学研究中心执行主任、北太振寰创始人卢朓副教授在中国科协组织的中学生创新人才培养论坛上的分享。
参与“英才计划”的学生会愿意使用一个新的软件吗?我心里也在打鼓。
可是,当我把开发具有自主知识产权的数值计算通用软件的意义向学生讲了之后,他们都非常支持,这令我非常感动。数值计算通用软件的开发离不开用户的试用和反馈,我指导的几位学生属于最早一批的软件测试者。他们的反馈对软件的开发和完善帮助很大,为国产科学计算软件的成功研发作出了贡献。
开发国产数值计算通用软件是在攻克“卡脖子”问题,是在践行总书记的号召,是重走“把核心技术牢牢掌握在自己手里”的长征。路险且阻,鲜有掌声,“英才计划”学生们的支持和贡献弥足珍贵,谢谢他们!
实际上,学生的上手速度还是很快的,在我介绍使用数值计算通用软件编程的基本知识,如程序的三大基本结构(顺序、循环、分支)之后,学生通过自学很快就学会了编制脚本代码来实现一些算法。
如图中所示,于铭轲同学编制的牛顿法求解一元函数的根的脚本代码,对一些实系数的一元五次多项式求根问题成功求得了数值解。
我自己也应用国产科学计算软件在北大上了一门面向全校本科生的公共课:《数值方法:原理、算法及应用》。
目前我准备的讲解视频除了涉及插值、数值积分、FFT之外,还包含了模拟退火、遗传算法、线性规划、整数规划、RSA加密、随机共轭梯度法、Dijkstra算法、Floyd算法、另外还包含了一些机器学习算法,如 K均值聚类,K近邻,支持向量机,朴素贝叶斯,决策树,关联规则挖掘,pagerank,期望最大化,主成分分析等。
扫码进入个人主页
查看相关视频
这些算法也有适合中学生的,比如说中学生的课本上都出现过的线性规划问题、非线性方程求解,还有插值与函数拟合的问题。我觉得学生可以弄明白这一类的建模方法,并使用国产科学计算软件来求解,这将使得学生获得极大的成就感。
最后,关于中学生人才培养我有两个不成熟的建议:1. 让更多感兴趣的学生参与类似“英才计划”这样的项目,2. 让企业、高中、高校三方结合起来。
高中阶段是属于基础教育范畴,要为人的成长发展奠定基础。但目前很多学生在高中还是很迷茫的。“学习数学、物理有什么用呢?”很多学生往往回答不出来,或者只能回答“为了考大学”。
而“英才计划”等类似的活动,可以让更多学生熟悉科研的全过程,激发学生自主学习的欲望,帮助学生找到自己真正热爱的方向,也就更充分地发挥了教育的发现、唤醒和激励作用。
目前“英才计划”把高中和高校连接起来,确实起到良好的效果。那如果把高中、高校和企业三方连接起来呢?
这样一来,能让学生了解职场工作环境,同时培养职业技能,建立职业人脉,让学生认清自己的能力和爱好,将来在进入大学能够更好地选择合适的专业。
在美国,不少高中的学生已经接触了编程,高中和企业进行了紧密合作,为每位参与的学生安排实习机会。他山之石,可以攻玉。企业和高中的合作项目能够引导学生了解计算机技术和算法,去了解算法背后的数学原理,去了解这些算法的应用以及给生活带来的便利。家庭贫困的学生还能通过这些活动获得一定的报酬。短期内,企业虽然没有获得太多的收益,但长远来看,为企业的未来培养了高素质的人才,更为社会和国家的发展作出了贡献。
对于爱好广泛、喜欢交流的同学而言,还可以了解到应用工程师不仅仅是坐在办公桌前写代码,还会和客户交流需求,帮助客户认清他们真正的需求,还需要和同事交流协作,还需要为企业的产品的功能编写通俗易懂、生动有趣的介绍。这些工作都充满了与人交流的乐趣。
当学生看到自己的编程技能同样能为企业所用,他们一定会感到非常振奋。例如在图像识别方面的很多算法,可以被应用在自动驾驶汽车和医疗诊断等领域。这些应用带来的好处都是高中学生能够理解的,会让高中学生获得巨大的成就感和价值感。
在此,真诚地希望更多的学生能够获得更多的成长机会,成长为我国科技和经济发展需要的优秀人才!
(全文完)
培训视频已更新,请点击链接查看:第八届数维杯培训视频:北太天元在数模竞赛中的应用
为更好的帮助大家使用北太天元参加数学建模竞赛,我们将进行“北太天元在数模竞赛中的应用”的主题培训。
〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️
时间:4月24日18:00-19:30
地点:钉钉线上会议
讲师:北太天元资深开发工程师高兆坤
〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️〰️
扫海报二维码进群蹲直播,欢迎大家届时参加!
此次培训与“数维杯”联合举办,使用北太天元参加数模竞赛将有机会获得特别奖励哦~
“优化”是生活中经常使用的词:开车时希望能在安全的前提下以最短时间到达目的地;双11做功课考虑各种优惠活动,希望获得最大优惠;超市进货时需要考虑动销存,最大化提高物品周转效率。 这些问题都是“最优化问题”,也是数学建模中的典型问题,是各大数学建模比赛里的常客。
优化题型有三要素:决策变量、目标函数、约束条件。
(1)决策变量:是决策者可以控制的因素,例如根据不同的实际问题,决策变量可以选为产品的产量、物资的运量及工作的天数等。
(2) 目标函数:是以函数形式来表示决策者追求的目标。例如目标可以是利润最大或成本最小等。
(3) 约束条件:是决策变量需要满足的限定条件。
历年国赛优化问题:
优化问题的出发点是系统思维,其基本思路是在一定的约束条件下,保证各方面资源的合理分配, 最大限度地提升系统某一性能或系统整体性能,最终实现最理想结果。对于这类问题,想要建立并求解数学模型,可以参考以下思路:
(1)明确目标,分析问题背景,确定约束条件,搜集全面的客观数据和信息。
(2)建立数学模型,构建变量之间的数学关系,设立目标函数。
(3)分析数学模型,综合选择最适合该模型的优化方法。
(4)求解模型,通常借助计算机和数学分析软件完成。
(5)对最优解进行检验和实施。
PS.北太天元内已有优化工具箱optimization,可以调用工具箱解决优化类问题。
下面给大家分享几种数学建模中常用优化算法:
1、线性规划
在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记 LP)则是数学规划的一个重要分支。
1.1 用北太天元求解线性规划问题
北太天元内已有优化工具箱optimization,其中的linprog等相关函数可用于求解线性规划问题。
1.2 线性规划特点
优点:
(1)作为经营管理决策中的数学手段,在现代决策中的应用非常广泛。
(2)有统一算法,任何线性规划问题都能求解,解决多变量最优决策的方法。
(3)训练速度快。
(4)预测速度快,可以推广到非常大的数据集,对稀疏数据也很有效。
缺点:
(1)对于数据的准确性要求高,只能对线性的问题进行规划约束,而且计算量大。
1.3 相关问题
运输问题(产销平衡)、指派问题(匈牙利算法)、对偶理论与灵敏度分析、投资的收益和风险。
2、整数规划
规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法,往往只适用于整数线性规划。目前还没有一种方法能有效地求解一切整数规划。
2.1 用北太天元求解线性混合整数规划问题
可在北太天元内调用优化工具箱optimization,使用intlinprog等相关函数求解线性混合整数规划问题。
2.2 整数规划的分类
如不加特殊说明,一般指整数线性规划。对于整数线性规划模型大致可分为两类:
(1)变量全限制为整数时,称纯(完全)整数规划。
(2)变量部分限制为整数的,称混合整数规划。
2.3 整数规划特点
原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:
(1)原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
(2)整数规划无可行解。
(3)有可行解(当然就存在最优解),但最优解值变差。
整数规划最优解不能按照实数最优解简单取整而获得。
2.4 求解方法分类
(1)分枝定界法—可求纯或混合整数线性规划。
(2)割平面法—可求纯或混合整数线性规划。
(3)隐枚举法—求解“0-1”整数规划:过滤隐枚举法;分枝隐枚举法。
(4)匈牙利法—解决指派问题(“0-1”规划特殊情形)。
(5)蒙特卡洛法—求解各种类型规划。
3、非线性规划
如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。
3.1 线性规划与非线性规划的区别
如果线性规划的最优解存在,其最优解只能在其可行域的边界上达到(特别是可行域的顶点上达到);而非线性规划的最优解(如果最优解存在)则可能在其可行域的任意一点达到。
3.2 相关问题
无约束问题(一维搜索方法、二次插值法、无约束极值问题的解法)、约束极值问题(二次规划、罚函数法)、飞行管理问题
4、动态规划
动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decisionprocess)最优化的数学方法。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。
5、多目标规划
多目标规划已经应用到科学的许多领域,包括工程、经济和物流,在两个或更多冲突的目标之间存在取舍时,需要采取最优决策。
解决多目标规划问题的方法:
(1)将多目标化为单目标 (给多个目标赋予权重)
(2)保持多目标不变,根据自己的偏好选择解
实际问题中,目标函数相互冲突是很常见的,例如购买汽车时,要求花费少且舒适度高或者要求性能好油耗低,这种问题并没有绝对最优解(因为并没有确定多个目标的权值),但是我们可以根据自己的需要选择一个相对好的(达到我们想要的最佳平衡)。为了寻求这种“最佳平衡”,可以采用算法帕累托最优(Pareto optimal)。
以上部分内容引用公众号“科研交流”,希望对大家有帮助,觉得有用就点个赞吧。小助手会不定期更新数学建模干货,可以多多关注哟。
加强基础研究,归根结底要靠高水平人才。为培育应用数学与相关专业的交叉复合型紧缺人才,培养高校学生底层研发思维,北太振寰(重庆)科技有限公司联合武汉大学开展2023年北太天元产学合作协同育人项目,共同基于国产通用型科学计算软件在相关专业开展教学改革与人才培养,服务国家战略科技力量建设。
2023年北太天元产学合作协同育人项目共设立“科学计算应用与实践”系列示范课程建设项目、实习与实践基地建设项目、“北太天元数模之星”大学生数学建模竞赛应用项目、北太天元师资培训项目。
该项目将基于北太天元数值计算通用软件建设产教融合示范课程和实训案例,升级理工科学院数学类相关课程的原有知识体系与实践内容,替换基于国外软件编制的相关教材等教学资料,旨在打造高质量、可向全国高校共享的课程教案和教学改革案例。
校企双方共同搭建基于国产化平台的实习实践基地、创新产教协同育人方式,通过“校内学习+竞赛辅导+企业实训”的一体化实践活动,建设新型师资队伍、协助高校培养具有底层研发思维的科技型人才,致力于提升高校的教学实践条件和水平。
该项目旨在激励大学生学习数学的积极性,提高学生数学建模的创造力、数学与计算机技术领域的综合能力,培养学生解决实际问题的综合能力,推动高校数学教学体系、教学内容和方法的改革。
教师是发展高水平教学的中坚力量,对于提高学生综合素质和实践能力至关重要。双方将基于“科学计算应用与实践”系列示范课程建设项目,开展教师培训与交流活动,为教师提供新的教学思路和方法,提高教师科研、教学水平,助力培养新时代科学技术人才。
项目概况经学校教师自愿申报、专家联合评审,拟立项结果如下:
立项结果已在北太振寰官网公示
校企合作共育珞珈英才,产教融合助推科技发展。下一步,北太振寰将与武汉大学切实推进北太天元产学合作协同育人项目落地,共同建设系列示范课程,搭建实习实践基地,培育新时代高校学生、教师人才队伍。
应对国际科技竞争、实现高水平自立自强,需要切实加强基础研究。北太振寰将持续深化与国内重点高校的战略合作,围绕具有完全自主知识产权的国产通用性科学计算软件平台,共同推进协同育人、产教融合的合作创新,支持数学、计算机等重点学科发展;不断探索培育交叉学科人才的新模式,助力强化基础研究后备力量!
数学建模中,评价类模型是一类比较基础的数学模型之一,往往是对应生活中的一些实际问题。
最常见的数学模型包括:层次分析法、模糊综合评价、熵值法、TOPSIS法、数据包络分析、秩和比法、灰色关联法。下面就上述几种评价类模型的优缺点进行系统地分析。
优点:
1、层次分析法是一种系统性的分析方法。把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
2、层次分析法是一种简洁实用的决策方法。既不单纯追求高深数学,还不片面地注重行为、逻辑和推理,而是把定性方法与定量方法有机地结合起来。
3、层次分析法所需定量数据信息比较少。层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲究定性的分析和判断。
缺点:
1、当指标过多时数据的统计量较大,权重较难确定。
2、特征值和特征向量的精确求法比较复杂。在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。
3、层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。
优点:
1、模糊评价通过精确的数字手段处理模糊的评价对象,能对蕴藏信息呈现模糊性的资料作出比较科学、合理、贴近实际的量化评价。
2、模糊评价法的评价结果是一个矢量,而不是一个点值,包含的信息比较丰富,既可以比较准确的刻画被评价对象,又可以进一步加工,得到参考信息。
缺点:
1、模糊综合评价的计算复杂,对指标权重矢量的确定主观性较强。
2、当指标集U较大时,在权矢量和为1的条件约束下,相对隶属度权系数往往会偏小,权矢量与模糊矩阵R不匹配,结果会出现超模糊现象,分辨率很差,无法区分谁的隶属度更高,严重情况甚至会造成评判失败,此时可以使用分层模糊评估法加以改进。
优点:
1、熵值法是根据各项指标值的变异程度来确定指标权数的,这是一种客观赋权法,避免了人为因素带来的偏差。
2、是一种客观赋权法,有理论依据,相对主观赋权具有较高的可信度和精确度。
3、算法简单,实践起来比较方便,不需要借助其他分析软件。
缺点:
1、熵值法不能减少评价指标的维数。
优点:
1、TOPSIS法避免了数据的主观性,不需要目标函数,不用通过检验,而且能够很好的刻画多个影响指标的综合影响力度。
2、TOPSIS法对于数据分布及样本量、指标多少无严格限制,既适于小样本资料,也适于多评价单元、多指标的大系统,较为灵活、方便。
缺点:
1、必须有两个以上的研究对象才可以进行使用。
2、TOPSIS法需要的每个指标的数据,对应的量化指标选取会有一定难度。
3、TOPSIS法不确定指标的选取个数为多少才适宜去很好刻画指标的影响力度。
优点:
1、数据包络分析又称作DEA,可用于处理具有多个输入和输出的问题。
2、数据包络分析对于效率的评估结果是一个综合指标,并且可以用于在经济学中总生产要素的概念。
3、可以处理间隔数据以及序号数据,且不会受到不同规模的影响。
4、分析中的加权值是数学的乘积计算,因此摆脱了人类的主观性。
缺点:
1、数据包络分析不应该有太多变量。
2、数据包络分析的输入变量和输出变量之间的关系程度没有考虑。
3、数据包络分析它产生了有效的边界,这可能相当大。如果样本量太小的话结果不太可靠。
优点:
1、秩和比法又称为RSR法,该方法使用了数据的相对大小关系,而不真正运用数值本身,所以此方法综合性强,可以显示微小变动,对离群值不敏感。秩和比法能够找出评价指标是否有独立性。
2、秩和比法能够对各个评价对象进行排序分档,找出优劣,是做比较,找关系的有效手段。
缺点:
1、是排序的主要依据是利用原始数据的秩次,最终算得的RSR值反映的是综合秩次的差距,而与原始数据的顺位间的差距程度大小无关,这样在指标转化为秩次是会失去一些原始数据的信息,如原始数据的大小差别等。
2、当RSR值实际说不满足正态分布时,分档归类的结果与实际情况会有偏差,且只能回答分级程度是否有差别,不能进一步回答具体的差别情况。
优点:
1、灰色关联法对于数据要求比较低,工作量比较少。
2、灰色关联法的思路明晰,可以在很大程度上减少由于信息不对称带来的损失。
缺点:
1、灰色关联法要求需要对各项指标的最优值进行现行确定,主观性过强。
2、灰色关联法的部分指标最优值难以确定。
以上内容转载自公众号“数学建模老哥”